On the Nonvanishing of Elliptic Curve L-functions at the Central Point

نویسنده

  • MATTHEW P. YOUNG
چکیده

We show that a large number of elliptic curve L-functions do not vanish at the central point, conditionally on the generalized Riemann hypothesis and on a hypothesis on the regular distribution of the root number. Some hypothesis on the root number is necessary because it has not yet been ruled out that the root number is −1 for almost all elliptic curves. This is the first result of its type for the family of all elliptic curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonvanishing Theorem for Derivatives of Automorphic L-functions with Applications to Elliptic Curves

1. A brief history of nonvanishing theorems. The nonvanishing of a Dirichlet series 2 a(n)n~\ or the existence of a pole, at a particular value of s often has applications to arithmetic. Euler gave the first example of this, showing that the infinitude of the primes follows from the pole of Ç(s) at s = 1. A deep refinement was given by Dirichlet, whose theorem on primes in an arithmetic progres...

متن کامل

Heegner Points and Non-vanishing of Rankin/selberg L-functions

We discuss the nonvanishing of the family of central values L( 1 2 , f ⊗ χ), where f is a fixed automorphic form on GL(2) and χ varies through class group characters of an imaginary quadratic field K = Q( √ −D), as D varies; we prove results of the nature that at least D1/5000 such twists are nonvanishing. We also discuss the related question of the rank of a fixed elliptic curve E/Q over the H...

متن کامل

Some local fixed point results under $C$-class functions with applications to coupled elliptic systems

The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005